$ax^2+bx+c=0$の解を$α,β$(ただし、$α<β$)とおきます。
このとき、2解の和、差、積、商はどのように表されるのでしょうか?
$ax^2+bx+c=0$の解は解の公式より
\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
となります。
したがって、$\alpha,\beta$それぞれは上記の2解のどちらか一方と対応することになります。
2解の和
2解の和$\alpha+\beta$は以下のように求められます。
\begin{align*}\alpha+\beta&=\frac{-b-\sqrt{b^2-4ac}}{2a}+\frac{-b+\sqrt{b^2-4ac}}{2a}\\[0.5em]&=\frac{-2b}{2a}\\[0.5em]&=-\frac{b}{a}\end{align*}
この方法とは別に$ax^2+bx+c=a(x-\alpha)(x-\beta)$となることから右辺を展開して
\[ax^2+bx+c=ax^2-a(\alpha+\beta)x+a\alpha\beta\]
xの項の係数を比較して
\begin{align*}b&=-a(\alpha+\beta)\\[0.5em]
\alpha+\beta&=-\frac{b}{a}\end{align*}
となることからもわかります。
2解の差
2解の差$\beta-\alpha$は以下のように求められます。
\begin{align*}\beta-\alpha&=\left|\frac{-b-\sqrt{b^2-4ac}}{2a}-\frac{-b+\sqrt{b^2-4ac}}{2a}\right|\\[0.5em]&=\left|\frac{-2\sqrt{b^2-4ac}}{2a}\right|\\[0.5em]&=\left|\frac{\sqrt{b^2-4ac}}{a}\right|\end{align*}
$\alpha,\beta$の大小関係はこの2解の差に関わります。$\alpha<\beta$より$\beta-\alpha>0$です。
解の公式から得られる2解は$a,b,c$の値によってどちらが大きいかが変わるので、上式の両辺がともに正となるためには左辺を絶対値で考える必要があります。
2解の積
2解の積$\alpha\beta$は以下のように求められます。
\begin{align*}\alpha\beta&=\frac{-b-\sqrt{b^2-4ac}}{2a}\cdot\frac{-b+\sqrt{b^2-4ac}}{2a}\\[0.5em]&=\frac{(-b)^2-(\sqrt{b^2-4ac})^2}{4a^2}\\[0.5em]&=\frac{b^2-(b^2-4ac)}{4a^2}\\[0.5em]&=\frac{4ac}{4a^2}\\[0.5em]&=\frac{c}{a}\end{align*}
別の方法として2解の和のときと同様に
\[ax^2+bx+c=ax^2-a(\alpha+\beta)x+a\alpha\beta\]
の定数項を比較して
\begin{align*}c&=a\alpha\beta\\[0.5em]\alpha\beta&=\frac{c}{a}\end{align*}
となることからもわかります。
2解の商
2解の商$\dfrac{\alpha}{\beta}$は以下のように求められます。
\begin{align*}\frac{\alpha}{\beta}&=\cfrac{\cfrac{-b\pm\sqrt{b^2-4ac}}{2a}}{\cfrac{-b\mp\sqrt{b^2-4ac}}{2a}}\\[0.5em]&=\frac{-b\pm\sqrt{b^2-4ac}}{-b\mp\sqrt{b^2-4ac}}×\frac{-b\pm\sqrt{b^2-4ac}}{-b\pm\sqrt{b^2-4ac}}\\[0.5em]&=\frac{b^2-2ac\mp
b\sqrt{b^2-4ac}}{2ac}&(複号同順)\\[0.5em]\therefore\frac{\alpha}{\beta}&=\frac{b^2-2ac+b\sqrt{b^2-4ac}}{2ac},\frac{b^2-2ac-b\sqrt{b^2-4ac}}{2ac}\end{align*}
複号が含まれるのは2解の差のときと同様、解の公式から得られる2解の大小関係は$a,b,c$の値によるためで、それによってそれぞれ$\alpha,\beta$のどちらに対応するのかが変わるためです。
これらは分母に$x^2$の係数$a$が含まれているため$a\neq0$でないと成り立ちません。これは2次方程式であるための条件なので当然ではあります。
2解の商の場合は$c=0$のとき必ず解の1つが$0$になるため有理化前であれば$\dfrac{\alpha}{\beta}$か$\dfrac{\beta}{\alpha}$の一方が$0$でもう一方が分母が$0$で計算できなくなります。有理化後の式だとどちらも分母が$0$になり計算できないので、成り立つ条件として$c\neq0$も含みます。
Share: