横画面推奨!
モバイル機器の場合、数式が見切れる場合があります。

2022年4月20日

正四面体の頂点から対面におろした垂線はどこで交わる?

正四面体の頂点から対面への垂線の足は対面のどの位置にある?
 正四面体の頂点から対面へ垂線をおろすと対面のどこと交わるでしょうか?

 正四面体A-BCDの頂点Aから対面BCDへおろした垂線の足をHとします。
△ABH、△ACH、△ADH
ABH, ACH, ADHについて考えます。
  • 正四面体なのでAB=AC=ADで、ADは共通する辺です。
  • 垂線AHは面BCDに対し垂直なので、AHB=AHC=AHD=90°
以上より、直角三角形の斜辺ともう1組の辺の長さがそれぞれ等しいのでABH, ACH, ADHは合同です。

このことから、BH=CH=DHであることがわかります。


点Hは頂点B,C,Dから等距離の点
したがって、点Hは頂点B, C, Dから等距離の点であるため面BCD外心であることがわかります。
また、面BCDは正三角形であるため点H内心重心垂心でもあります。

Share:
share
◎Amazonのアソシエイトとして、当サイト「数学について考えてみる」は適格販売により収入を得ています。
Powered by Blogger.

Blog Archive

PR

blogmura_pvcount
ブログランキング・にほんブログ村へ