33° (=11π60)33° (=11π60)のときの三角関数がどんな式で表されるのかを調べてみました。
sin33°sin33°
sinsinの加法定理より
sin33°=sin(15°+18°)=sin15°cos18°+cos15°sin18°sin33°=sin(15°+18°)=sin15°cos18°+cos15°sin18°
sin15°=√6−√24cos15°=√6+√24sin18°=sqrt5−14cos18°=√10+2√54sin15°=√6−√24cos15°=√6+√24sin18°=sqrt5−14cos18°=√10+2√54
なので
sin33°=√6−√24⋅√10+2√54+√6+√24⋅√5−14=√2{(√3−1)√10+2√5+(√3+1)(√5−1)}16=2√20−10√3+4√5−2√15−√2−√6+√10+√3016_sin33°=√6−√24⋅√10+2√54+√6+√24⋅√5−14=√2{(√3−1)√10+2√5+(√3+1)(√5−1)}16=2√20−10√3+4√5−2√15−√2−√6+√10+√3016−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(a)
cos33°cos33°
coscosの加法定理より
cos33°=cos(15°+18°)=cos15°cos18°−sin15°sin18°=√6+√24⋅√10+2√54−√6−√24⋅√5−14=√2{(√3+1)√10+2√5−(√3−1)(√5−1)}16=2√20+10√3+4√5+2√15−√2+√6+√10−√3016_cos33°=cos(15°+18°)=cos15°cos18°−sin15°sin18°=√6+√24⋅√10+2√54−√6−√24⋅√5−14=√2{(√3+1)√10+2√5−(√3−1)(√5−1)}16=2√20+10√3+4√5+2√15−√2+√6+√10−√3016−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(b)
tan33°tan33°
三角関数の相互関係
tanθ=sinθcosθtanθ=sinθcosθ
より、(a),(b)(a),(b)を代入して
tan33°=sin33°cos33°=√2{(√3−1)√10+2√5+(√3+1)(√5−1)}16√2{(√3+1)√10+2√5−(√3−1)(√5−1)}16=(√3−1)√10+2√5+(√3+1)(√5−1)(√3+1)√10+2√5−(√3−1)(√5−1)×(√3+1)√10+2√5+(√3−1)(√5−1)(√3+1)√10+2√5+(√3−1)(√5−1)=(√5−1)√10+2√5+42(2√3+1+√5)×2√3−(1+√5)2√3−(1+√5)=(√15−√3−2)√10+2√5+2(2√3−√5−1)2(3−√5)×3+√53+√5=(√15−√5+√3−3)√10+2√5+2(√15−2√5+3√3−4)4=√(√15−√5+√3−3)2(10+2√5)+2(√15−2√5+3√3−4)4=√110−60√3+46√5−28√15+√15−2√5+3√3−42_tan33°=sin33°cos33°=√2{(√3−1)√10+2√5+(√3+1)(√5−1)}16√2{(√3+1)√10+2√5−(√3−1)(√5−1)}16=(√3−1)√10+2√5+(√3+1)(√5−1)(√3+1)√10+2√5−(√3−1)(√5−1)×(√3+1)√10+2√5+(√3−1)(√5−1)(√3+1)√10+2√5+(√3−1)(√5−1)=(√5−1)√10+2√5+42(2√3+1+√5)×2√3−(1+√5)2√3−(1+√5)=(√15−√3−2)√10+2√5+2(2√3−√5−1)2(3−√5)×3+√53+√5=(√15−√5+√3−3)√10+2√5+2(√15−2√5+3√3−4)4=√(√15−√5+√3−3)2(10+2√5)+2(√15−2√5+3√3−4)4=√110−60√3+46√5−28√15+√15−2√5+3√3−42−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
それぞれの近似値は以下のようになります。
sin33°=0.54464cos33°=0.83867tan33°=0.64941sin33°=0.54464cos33°=0.83867tan33°=0.64941
裏 RjpWikiさんご指摘ありがとうございます。
Share: