すると左辺は
(左辺)=(25−15)+(35−25)+⋯⋯+{n5−(n−1)5}+{(n+1)5−n5}=(n+1)5−15=n5+5n4+10n3+10n2+5n=n5+5n(n3+2n2+2n+1)=n5+5n(n+1)(n2+n+1)
右辺は
(右辺)=5n∑k=1k4+10n∑k=1k3+10n∑k=1k2+5n∑k=1k+n∑k=11=5n∑k=1k4+52n2(n+1)2+53n(n+1)(2n+1)+52n(n+1)+n=5n∑k=1k4+52n(n+1)(n2+n+1)+53n(n+1)(2n+1)+n
したがって、
n5+5n(n+1)(n2+n+1)=5n∑k=1k4+52n(n+1)(n2+n+1)+53n(n+1)(2n+1)+n5n∑k=1k4=n5−n+52n(n+1)(n2+n+1)−53n(n+1)(2n+1)=n(n+1)(n3−n2+n−1)+52n(n+1)(n2+n+1)−53n(n+1)(2n+1)=16n(n+1){6(n3−n2+n−1)+15(n2+n+1)−10(2n+1)}=16n(n+1)(6n3+9n2+n−1)=16n(n+1)(2n+1)(3n2+3n−1)n∑k=1k4=130n(n+1)(2n+1)(3n2+3n−1)
となります。