Loading web-font TeX/Math/Italic
横画面推奨!
モバイル機器の場合、数式が見切れる場合があります。

2022年2月18日

平方完成すると頂点の座標がわかるのはなぜ?

 平方完成すると頂点の座標がわかるのはなぜなのでしょうか?
2次関数の頂点
 まず2次関数の頂点とは、2次関数がとりうる値のうち最大値または最小値となる点のことです。
最も簡単な形の2次関数y=x^2について考えると実数の2乗は必ず0以上になる、すなわちx=0のときy=0でこれが最小値となるため頂点の座標は(0,0)であることがわかります。
 平方完成した2次関数y=(x-p)^2+qについて考えます。
y-q=(x-p)^2
という形に変形しx-p=s,y-q=tとおくと
t=s^2
となります。
これは2次関数y=x^2と同じ形であるため、s=0のときt=0でこれが最小値となります。
xyの式に戻すと
\begin{align*}s=0\\ x-p&=0\\[0.5em]x&=p\\[1em]t=0\\ y-q&=0\\[0.5em]y&=q\end{align*}
となるので、s=0のときx=pt=0のときy=qであることがわかります。
したがって、y=(x-p)^2+qの頂点は(p,q)であるとわかります。

 このように平方完成すると頂点の座標が2次関数に表れることがわかります。
また、p,qは頂点の座標であるだけでなく、それぞれ2次関数y=x^2をどれだけx軸方向、y軸方向へ移動させたかの移動量も表しています。

Share:
share
◎Amazonのアソシエイトとして、当サイト「数学について考えてみる」は適格販売により収入を得ています。
Powered by Blogger.

PR

blogmura_pvcount
ブログランキング・にほんブログ村へ