横画面推奨!
モバイル機器の場合、数式が見切れる場合があります。

2021年9月8日

2次関数のグラフを描く

「関数$y=x^2+2x$のグラフをかけ。」

[03 拓殖大]
 このような問題をどのように解けばよいでしょうか?

 まず、最も次数の大きい$x^2$の係数は$1$、正の数なので下に凸の放物線であることがわかります。

 次に、$y=0$のときのxの値と$x=0$のときの$y$の値を求めます。$y=0$というのはx軸のことなので、$x$の値は関数とx軸との交点のx座標となります。また、$x=0$はy軸のことで、$y$の値は関数とy軸との交点のy座標になります。

$y=0$を代入した$x^2+2x=0$を因数分解して解きます。
\begin{align*}x^2+2x=x(x+2)&=0\\[0.5em]x&=0,2\end{align*}
したがって、問の関数は$(-2, 0), (0, 0)$を通ります。

$x=0$を代入すると$y=0$となり、上記の$(0,0)$を通ることがわかります。

 最後に、問の関数を平方完成します。
\begin{align*}y&=x^2+2x\\[0.5em]&=(x^2+2x+1)-1\\[0.5em]&=(x+1)^2-1\end{align*}
平方完成した式より、軸は$x=-1$、頂点は$(-1,-1)$であるとわかります。
 以上からわかったことを元にグラフを描きます。
y=x^2+2xのグラフ
図1 $y=x^2+2x$のグラフ
$y=x^2+2x$のグラフは、$(-2,0),(-1,-1),(0,0)$の3つの点を打ち、3点を通り$x=-1$で線対称になるように放物線を描きます。

 $y=0$のときの$x$の値を求める時因数分解できるかどうかわからない場合は、判別式を使って解がいくつあるかを調べます。
\begin{align*}ax^2+&bx+c=0のとき\\ D&=b^2-4ac\end{align*}
  • $D>0$のとき、図1のようにx軸に2点で交わっています。
  • $D=0$のとき、x軸と頂点が接しています。
  • $D<0$のとき、x軸とは交わりも接しもしません。
判別式が$D\geqq0$のとき、解の公式を使って$x$の値を求めます。
\begin{align*}ax^2+&bx+c=0のとき\\ x&=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\end{align*}

Share:
◎Amazonのアソシエイトとして、当サイト「数学について考えてみる」は適格販売により収入を得ています。
Powered by Blogger.

Blog Archive

PR

ブログランキング・にほんブログ村へ