Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
横画面推奨!
モバイル機器の場合、数式が見切れる場合があります。

2021年9月15日

10進数を2進数に変換する

10進数

 10進数の数として例えば(1234)_{10}について考えてみます。
これをを繰り返し10で割ってみます。
10進数-10進数変換
10で割ったあと余りを出し、商をさらに10で割ります。この計算をしやすいように割り算の筆算を逆さまにしたような書き方でおこないます。
商が0になるまで割り続け、余りの数を下から並べ直すと元の1234という数が出てきます。

 10で1回割ると10より小さい4が余りとして出てきます。

1234=10× 123+4
これを式で表すと上のようになります。10に掛けている数が商となります。

商の123を10で割ると次は余りとして3が出てきます。

\begin{align*}1234&=10(10× 12+3)+4\\ &=100× 12+10× 3+4\end{align*}
12310× 12+3とすることで商の12と余りの3に分解しています。
これを繰り返していきます。
\begin{align*}1234&=100(10× 1+2)+10× 3+4\\ &=1000× 1+100× 2+10× 3+4\end{align*}
これで、(1234)_{10}を位ごとに分解することができました。これが筆算で行っていることです。
 位を10で表すと10の累乗となり、
1234=10^3× 1+10^2× 2+10^1× 3+10^0× 4
と書けます。このことからも10で繰り返し割ることで位の数ごとに分解することができることがわかると思います。

2進数

 上でおこなう筆算を2進数でもやってみます。割る数は2進数なので2です。
10進数-2進数変換
余りを下から並べると(10011010010)_2となり、これが(1234)_{10}を2進数変換した数となります。
10進数のときのように2の累乗を使った式をつくると、
\begin{align*}1234&=2^{10}× 1+2^9× 0+2^8× 1+2^7× 1\\ &\quad+2^6× 1+2^5× 0+2^4× 1+2^3× 0\\ &\qquad+2^2× 0+2^1× 1+2^0× 0\\ &=2^{10}× 1+2^7× 1+2^6× 1+2^4× 1+2^1× 1\end{align*}
となるため2進数の数の一番下の桁から一の位、二(2^1)の位、四(2^2)の位、八(2^3)の位……となっていることがわかります。
Share:
share
◎Amazonのアソシエイトとして、当サイト「数学について考えてみる」は適格販売により収入を得ています。
Powered by Blogger.

PR

blogmura_pvcount
ブログランキング・にほんブログ村へ